358 research outputs found

    Phenome-wide association study identifies marked increased in burden of comorbidities in African Americans with systemic lupus erythematosus.

    Get PDF
    BACKGROUND: African Americans with systemic lupus erythematosus (SLE) have increased renal disease compared to Caucasians, but differences in other comorbidities have not been well-described. We used an electronic health record (EHR) technique to test for differences in comorbidities in African Americans compared to Caucasians with SLE. METHODS: We used a de-identified EHR with 2.8 million subjects to identify SLE cases using a validated algorithm. We performed phenome-wide association studies (PheWAS) comparing African American to Caucasian SLE cases and African American SLE cases to matched non-SLE controls. Controls were age, sex, and race matched to SLE cases. For multiple testing, a false discovery rate (FDR) p value of 0.05 was used. RESULTS: We identified 270 African Americans and 715 Caucasians with SLE and 1425 matched African American controls. Compared to Caucasians with SLE adjusting for age and sex, African Americans with SLE had more comorbidities in every organ system. The most striking included hypertension odds ratio (OR) = 4.25, FDR p = 5.49 × 10 CONCLUSIONS: African Americans with SLE have an increased comorbidity burden compared to Caucasians with SLE and matched controls. This increase in comorbidities in African Americans with SLE highlights the need to monitor for cardiovascular and infectious complications

    Understanding patient-provider communication entered via a patient portal system

    Get PDF
    ABSTRACT Our study examines patient-provider communication via a patient portal in a large medical center. Our study is based on 1172 interactions made among stakeholders concerning 100 patients who are randomly selected from the 2009 MyHealthAtVanderbilt.com (a patient portal at the Vanderbilt Medical Center) patient pool; among which, 35 use the patient portal for messages. The findings show a wide range of topics discussed and ways in which patients provide and seek information as well as express psychosocial and emotional needs. In addition, while the patient portal has advantages over traditional communication technologies, it was not the primary communication media for our study sample. More research is needed to better elucidate barriers to the use of patient portals and the optimal methods of communication in differing contexts

    Design patterns for the development of electronic health record-driven phenotype extraction algorithms

    Get PDF
    AbstractBackgroundDesign patterns, in the context of software development and ontologies, provide generalized approaches and guidance to solving commonly occurring problems, or addressing common situations typically informed by intuition, heuristics and experience. While the biomedical literature contains broad coverage of specific phenotype algorithm implementations, no work to date has attempted to generalize common approaches into design patterns, which may then be distributed to the informatics community to efficiently develop more accurate phenotype algorithms.MethodsUsing phenotyping algorithms stored in the Phenotype KnowledgeBase (PheKB), we conducted an independent iterative review to identify recurrent elements within the algorithm definitions. We extracted and generalized recurrent elements in these algorithms into candidate patterns. The authors then assessed the candidate patterns for validity by group consensus, and annotated them with attributes.ResultsA total of 24 electronic Medical Records and Genomics (eMERGE) phenotypes available in PheKB as of 1/25/2013 were downloaded and reviewed. From these, a total of 21 phenotyping patterns were identified, which are available as an online data supplement.ConclusionsRepeatable patterns within phenotyping algorithms exist, and when codified and cataloged may help to educate both experienced and novice algorithm developers. The dissemination and application of these patterns has the potential to decrease the time to develop algorithms, while improving portability and accuracy

    Enabling genomic-phenomic association discovery without sacrificing anonymity

    Get PDF
    Health information technologies facilitate the collection of massive quantities of patient-level data. A growing body of research demonstrates that such information can support novel, large-scale biomedical investigations at a fraction of the cost of traditional prospective studies. While healthcare organizations are being encouraged to share these data in a de-identified form, there is hesitation over concerns that it will allow corresponding patients to be re-identified. Currently proposed technologies to anonymize clinical data may make unrealistic assumptions with respect to the capabilities of a recipient to ascertain a patients identity. We show that more pragmatic assumptions enable the design of anonymization algorithms that permit the dissemination of detailed clinical profiles with provable guarantees of protection. We demonstrate this strategy with a dataset of over one million medical records and show that 192 genotype-phenotype associations can be discovered with fidelity equivalent to non-anonymized clinical data

    Transient compartmentalization of simian immunodeficiency virus variants in the breast milk of african green monkeys

    Get PDF
    Natural hosts of simian immunodeficiency virus (SIV), African green monkeys (AGMs), rarely transmit SIV via breast-feeding. In order to examine the genetic diversity of breast milk SIV variants in this limited-transmission setting, we performed phylogenetic analysis on envelope sequences of milk and plasma SIV variants of AGMs. Low-diversity milk virus populations were compartmentalized from that in plasma. However, this compartmentalization was transient, as the milk virus lineages did not persist longitudinally

    An analytical approach to characterize morbidity profile dissimilarity between distinct cohorts using electronic medical records

    Get PDF
    AbstractWe describe a two-stage analytical approach for characterizing morbidity profile dissimilarity among patient cohorts using electronic medical records. We capture morbidities using the International Statistical Classification of Diseases and Related Health Problems (ICD-9) codes. In the first stage of the approach separate logistic regression analyses for ICD-9 sections (e.g., “hypertensive disease” or “appendicitis”) are conducted, and the odds ratios that describe adjusted differences in prevalence between two cohorts are displayed graphically. In the second stage, the results from ICD-9 section analyses are combined into a general morbidity dissimilarity index (MDI). For illustration, we examine nine cohorts of patients representing six phenotypes (or controls) derived from five institutions, each a participant in the electronic MEdical REcords and GEnomics (eMERGE) network. The phenotypes studied include type II diabetes and type II diabetes controls, peripheral arterial disease and peripheral arterial disease controls, normal cardiac conduction as measured by electrocardiography, and senile cataracts
    corecore